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The paper presents a multiscale analysis of the intermediate region of the two-
dimensional convectively unstable wake past a bluff body. A recent asymptotic
expansion solution was used as basic flow (Tordella & Belan, Phys. Fluids, vol. 15,
2003, 1897). This solution was obtained by matching an inner to an outer flow, both
of which are Navier—Stokes solutions. By introducing a spatio-temporal multiscaling
into the instability problem, an inhomogeneous Orr—Sommerfeld equation and an as-
sociated modulation equation are obtained. The streamwise variation of the instability
characteristics can then be deduced from the wave modulation, by considering the
system to be perturbed by waves with a complex wavenumber that corresponds of
the dominant saddle point of the local dispersion relation, taken at different positions
downstream of the wake, and at different Reynolds numbers. The corrections of no
parallelism are remarkable in the intermediate wake. When the disturbance is related
to an early intermediate station, the corrections lead to absolute instability in the
upstream portion of the intermediate wake, where, in addition, the spatial growth rate
decreases. When the disturbance is related to a section in the far field, conditions of
minimal temporal stability are reached about 20 body scales downstream. In the far
field the temporal damping increases with the Reynolds number.

1. Introduction

A wake is a spatially developing flow where self-sustained oscillations arise
(see e.g. Zebib 1987; Triantafyllou, Kupfer & Bers 1987). The disturbances grow
first linearly and two-dimensionally in a region of absolute instability that exists
downstream of the back stagnation point or trailing edge of the body which generates
the wake, preceded and followed by convectively unstable regions (Mattingly &
Criminale 1972; Monkewitz 1988; Yang & Zebib 1989; Hanneman & Oertel 1989;
Pier 2002).

The present work focuses on the convectively unstable region of the wake that
exists downstream of the absolutely unstable region namely the intermediate region
of the wake that precedes the far field. We consider the linear spatially growing
instability waves obtained by applying the WKBJ approximation to a spatio-temporal
multiscaling treatment of the Orr—Sommerfeld instability equations. The multiscaling
is carried out to account for the non-parallel effects (Bouthier 1972). In particular, we
are interested in the effects associated with the lateral momentum dynamics and the
Reynolds number, which are features which must be represented by the basic flow.
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The quality of the non-parallel basic flow is important because it is one of the elements
that structure the perturbative equations. The sensitivity of the Orr-Sommerfeld (OS)
and operator to modifications of the basic flow has recently been considered for
plane Couette flow by Bottaro, Corbett & Luchini (2003) in terms of the differences
between the laboratory flow and its theoretical counterpart. In the same way, it can be
inferred that the differences between simplified models of Navier—Stokes near-parallel
solutions (usually given in terms of the streamwise momentum distribution only) and
their theoretical equivalents, which instead explicitly include lateral dynamics, will
also originate variations of the OS eigenvalues.

In this context, we analyse the convective instability of a new analytical wake
solution that is very accurate in the intermediate and far fields, where instability is
convective. This solution (Tordella & Belan 2003; Belan & Tordella 2002) is described
in §2 and was obtained by matching inner and outer expansion solutions that both
satisfy the Navier-Stokes model. The adoption of that model in the outer region also
corresponds to a new analytical approach, which takes into account the fact that the
nonlinear convection and the diffusion are comparable in the lateral far field, and uses
matching criteria based on the vorticity, entrainment and pressure gradient matching.
Note also that the analytical nature of the base solution is an advantage for the study
of instability, because it makes the link between the steady equilibrium flow, the co-
efficients of the perturbation operator and associated amplitude equation, and the
instability characteristics explicit, see § 3. In this analysis, by adopting spatio-temporal
multiscaling, the equation that represents the evolution of disturbances is of the form
9,01 + P(x1)9,,01 + G (x1)0; =0, where 9, is a phase function, x, #; are the slow space
and time variables and ¢ is a small parameter equal to the inverse of the Reynolds
number. The modulation evolution allows the first-order correction of the instability
characteristics to be determined. We considered the modulation of two-dimensional
periodic perturbations with a wavenumber corresponding to that of the saddle point
of the zero-order local dispersion relation (parametric OS), taken at different positions
downstream and Reynolds numbers. The relevant instability characteristics variations
are described in §4.

2. Non-parallel basic flow

An approximate Navier-Stokes solution for the region of the two-dimensional
steady bluff body wake where the non-parallelism of the streamlines is not yet
negligible is considered. This region is intermediate between the near field, which
includes the two symmetrical counter-rotating eddies, and the ultimate far wake, see
figure 1. Recognition of the existence of an intermediate asymptotics (Barenblatt
1996) is important, as the existence of a longitudinal intermediate region physically
introduces the adoption of the thin shear layer hypothesis, and relevant near-similar
variable transformations for the inner flow, while also supporting a differentiation
of the behaviour of the intermediate flow with respect to its infinite asymptotics.
The analytical representation here used accounts for the effects of the streamwise
diffusion, nonlinear convection and entrainment at the lower orders and for the
pressure gradient and linear and nonlinear exchange of vorticity from the inner
toward the outer part of the flow at the higher orders (Belan & Tordella 2002;
Tordella & Belan 2003). At the first order, the multiscaling allows the insertion of
these lower order effects, through, perhaps for the first time, the explicit use of the
transversal momentum component of the primary flow. The solution was obtained
by matching an inner solution — a Navier-Stokes expansion in powers of the inverse
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FiGure 1. Flow schematic.

of the longitudinal coordinate (x/2,n=0, 1,2, ...) — and an outer solution, which is
a Navier-Stokes asymptotic expansion in powers of the inverse of the distance from
the body. The matching was built on the criteria that, where the two solutions meet,
the pressure longitudinal gradients and the vorticities must be equal and the flow
towards the inner layer must be equal to the outflow from the external stream. The
lateral decay is found to be algebraic at high orders in the inner expansion solution.
Assuming the inner expansion as being an approximation of the primary wake flow
and using the quasi-similar transformation

12y, (2.1)

where (x, y) are the non-dimensional longitudinal and normal coordinates, the non-
dimensional velocity components (u, v), up to O(x~*?), can be written as

u=14+x"2¢(n)+x"$2(n) + xp3(n), (2.2)
v=x"xi(n) +x*x(n). (2.3)

The non-dimensionalization is based on the characteristic length D of the body
that generates the wake, the density p and the velocity U of the free stream. The
Reynolds number is defined as Re = U D /v, where v is kinematic viscosity of the fluid.
According to the multiscale approach, the slow spatial and temporal variables

X=x,n1=x

X =¢&x, ty =¢t, (2.4)

where ¢ =1/Re, are introduced. Since n=(Rex;)"'/?

the basic flow can also be written as

y the velocity components of

u= 0¥ =uo(xi,y) +eur(xy, y)+---, (2.5)
vV=—0,¥ = —d,,¥ =¢evi(x1,y)+ . (2.6)

By only considering the integer powers of g, (2.2), (2.3) can assume the multiscale
structure (2.5), (2.6). For the u component the result is

u=1+Re™"x i) + Re™'xy" o) + Re ™ s (m)
= [14+ Re "2x; " Pgy(n)] + e[x; " ¢a(n) + Re ™2 s (n)].
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so that

wo =14 Re "Px; 2y =1 — x; P Re™ "2 e/, (2.7)
_ — —3/2
up = Xx; 1(152+Re 1/2x1 /¢3

2 11
e (44 ) e Epe( )
—x;PRe™V2C3(y? Jxy — 2)[3C3 — Re F3(Y/\/vxl)]’ (2.8)

where constants Cy, C; and Cj are integration constants that depend on the Reynolds
number (see Belan & Tordella 2002). Function F; is the confluent hypergeometric
function, and F3 is the particular case, for n =3, of the general nth-order function

Ren n
Fyln) = / . )Gnm’)dn’; Go(n) = 7" /0 My (') Hr, (')

where the function Hr,,,l(n)=Hn,1(%Rel/2n) is defined in terms of the Hermite
polynomials. Function M, (n) is the sum of the inhomogeneous terms of the general
ordinary differential equation for ¢,, n > 1, obtained from the x component of the
Navier—Stokes equation (see Tordella & Belan 2003). Function M, includes the effects
of the streamwise pressure gradient and diffusion terms and also of part of the
longitudinal convection term.

At the same approximation order, the v component is given by

v=Re 'x i) + Re2x 7 xo(n) =[x xi(n) + Re " x Pya(m)] (2.9)
so that

1 ¥R
_ R /
X2 2 e

_ 7y2/4X| y y y
X{ Cryem A {¢2<M)+¢Rexl¢2<w€em>]} (10

where ¢, is the function coefficient of the u expansion at the order x~!, which is also
present in (2.8), and @, = [ ¢, dn.

v = X7 x4 X PRe™?

3. Multiscale analysis
The multiscale approach leads to the following hypothesis for the perturbation

of the stream function:
W = (p(x7 ) 1;8) = [(p()(xlv Y tl) + 8(01()(1, ) tl) + - ] ei@g(x,t;a). (31)

By rewriting ¢o(x1, y, t1) = A(x1, 11)5o(x1, y) and ¢i(x1, y, 11) = A(x1, 71)¢1(x1, y), where
A(xy, 1) =e%tn) i a slow spatio-temporal modulation factor (Bouthier 1972), the
perturbation takes the form

Y= (po+epr +- ) = Ao+ ety + )™ = (G + gy + )T (32)
The complete phase becomes § =6, + 6; + - - -, and according to the Whitham theory
(Whitham 1974)

9.0 =h = (k+is), 3,0 = —0 = —(w +ir), (3.3)
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where & and o are the complex dimensionless wavenumber and pulsation (k = Re(h)

wavenumber, s =Im(h) spatial growth rate, w = Re(o) circular frequency, r =Im(o)

temporal growth rate), so that 9,6y =ho = (kg + is0) and 9,6) = — o9 = — (wg + irg).
In terms of x;, #; and 6, the spatial and temporal derivatives transform as

Oy = hoOg, + €0y, +---, 0y, =0y, 9 — —00dg, + 0, + . (3.4)

Due to the multiscaling, the complete (order O 4+ order 1) wavenumber and pulsation

will be h=00/0x =ho00/36y + €30,/0x; + - =ho+¢eh; + - and o = — 30/0r =

— 0000/06) + €06,/0t; + - -+ = — (09 + €01 + - - ), where the first-order corrections of
the instability characteristics will be obtained as

hy = (kg +1s1) = 06, /0x1, o1 = (w1 +1r1) = —06;/0t4. (3.5)

According to Bouthier (1972), by applying the derivative transformations (3.4)
to the linearized equations for the perturbation of the stream function, a hierarchy
of ODESs are obtained. The zero-order equation is the parametric Orr-Sommerfeld
equation, where x; and the Reynolds number Re are parameters,

o o = 00 A o, (3.6)

with .o = {(32 — h})* — ihoRe[uo(af, —h3)—uyl}, B=— iRe(af, — h3). The modulation
A, unknown at this order, describes the transmission of the instability wave from one
near-parallel region to the next and is determined at the next order. The first-order
multiscaling equation is inhomogeneous:

o o1 = 00 B @1 + Meo. (3.7)
The operator ./ is
M = {[Re(2hooo — 3hguo — ugy) + 4ihg) 0y, + (Re ug — 4iho)d; ,, — Re vy (3, — h§d,)
+ Rev{dy + ihoRe[uy (3] — hg) — u{] + Re(d; — hg)dy, }. (3.8)

Note that .# is a function of the full basic flow, also of the transversal momentum
v; and thus of the entrainment, as well as of the zero-order dispersion relation and
eigenfunctions. To avoid secular terms in the solution of (3.7), a solvability condition
has to be satisfied. This condition requires that the inhomogeneous term in (3.7) is
orthogonal to each solution of the adjoint homogenous problem. This yields

(3, A) / g (M4 M) o dy + (3,4) / & [My + Md?] o dy

+ A/ ¢ [Midy, + M3}, 4+ M3+ Mydy, + Msd; + Mgd; | tody = 0. (3.9)

o0

where the coefficients M; are function of x;, y:

M1 = Re(2h0cro — 3héuo — ug) + 41//1(3), M2 = Reuo — 4il’l0,
M3 = —1h0Re(83 + h(z))ul, M4 = —Re(af + h(z)) V1, (310)
M5 = ih()REM], M6 = R€U1, M7 = —Rehé, Mg = Re.

and ¢;" is the perturbation stream function of the homogeneous adjoint problem. Note

that, when the multiscaling is only spatial, coefficients M7, Mg do not exist and this
leads to the simple modulation equation d,, A(x;) =1ik(x;)A(x;), where h; depends on
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FiGURre 2. Coeflicients of the modulation equation (3.11) for perturbations centred around
x; =~ 10, 20, 40, with Re =35, 50, 100.

the M;,i=1,...,6, see Tordella & Belan (2005). By recalling that A(x,, t;) =11,
and going back to the original coordinates x, and ¢, (3.9) can be written as

8,01 + p(x),6 + £q(x)0; = 0 (3.11)

where coefficients
o0

& [My + My37] ¢ody
plx) = 7% (3.12)
/ ¢ [Mr+ Msd}] cody

and

/ ¢ [M19y, 4+ Mad] ,, + M3+ Mydy + Msd; + M9, | Zody

q(x) =—= = (3.13)
/ & My + Med?] gody

are not singular.

The disturbance and the basic flow determine the coefficients p and q. We
consider the system to be disturbed by a wave with wavenumber equal to that of the
less stable mode at a given position x = x;, that is then parametrically varied in the
domain. In such a way, the system in x = x; is tuned to the appropriate characteristics
corresponding to the dominant saddle point of the local dispersion relation. We call
this position x =x, the centre of the perturbation. The distribution of the module
of the coefficients of the modulation equation (3.11) is shown in figure 2, for three
perturbations centred around x; = 10.50, 20.95, 40.20 and for Re = 35, 50, 100.
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Relations (3.13), and (3.12) highlight the different physical contents of the two
modulation coefficients. In ¢ are present the coefficients M;, j =3...,6, that depend
on the first-order longitudinal u;, but also crosswise v;, momentum distributions. This
information is not in p. Only the zero-order longitudinal momentum u, appears in
p. This explains the large difference that, at a given x, can exist between p and ¢. In
particular, in the interval x € [5, 60] where the non-parallel corrections are computed,
it can be seen that on increasing Re, from 35 to 100, eg increases by one order of
magnitude near the beginning of the domain, while p remains almost unchanged
in the interval of values [0, 0.8], see figure 2. Thus ¢ is very sensitive to the variation
of the entrainment intensity with Re, that is, to the acquisition of lateral momentum
in the wake.

The modulation equation (3.11) can be solved numerically by specifying the initial
state and the boundary conditions on the domain of validity of the theory (which
extends from a few body scales D downstream of the body, to the far field, x; > D, in
the present computations from x =5 to x = 60). Having only one boundary condition
available, it can be used to impose the asymptotic uniformity of the modulation in
the far field:

(0:01)2=, =0, V 1. (3.14)
With regards to the initial condition, a natural choice is
(01)(x,1=0) = (const) (1 +1). (3.15)

4. Streamwise distribution of the instability characteristics

By numerically solving the modulation equation (3.11) and using (3.5) the
first-order correction of the instability characteristics has been computed in the
intermediate and far circular cylinder wake. A large difference between the complete
(order 0 4 order 1) problem and the order O problem is shown more by the pulsation
o and the temporal growth factor r, than by the wavenumber k& and the spatial
growth factor s.

Typically, the correction increases the values of k and s, thus it reduces the
module of the spatial amplification, as the simpler spatial multiscale analysis also
shows (Tordella & Belan 2005). The correction for k is higher as it approaches the
body and Re is increased, see figure 3 for the disturbance centred around x; =5.5. The
correction for s is negligible throughout, regardless of the Re, except for Re =50 and
100 at the beginning of the domain considered here, when the perturbation relates
to sections in the earlier intermediate region, i.e. in the present computation when
x; =35.5, see figure 3.

Figures 4-6 show the (order 0 + correction of order 1) w and r distributions
compared with the distributions of the zero-order problem in the wake portion
observed with this asymptotic theory, x € [5, 60]. A first observation concerning the
growth factor r is that the correction of the first order yields absolute instability
from x=51to x ® 9 at Re=50, and from x =5 to x ~ 15 at Re=100, when the
perturbation relates to sections in the early intermediate region, see figure 4. On placing
xg in x = 10.5, the behaviour is similar, but the absolute instability — in the portion
of the wake we can see with this asymptotic theory — is reached only for Re =100,
see figure 4. In general, r is higher close to the body, as it decreases downstream.
However, when the perturbation relates to sections in the late intermediate region,
x; ~ 40, no regions of absolute instability are present, and contrary to k, s, and w the
growth factor r can exhibit maximum points, i.e. points where the temporal stability
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factor distributions for Re =35, 50, 100. The disturbance has a complex wavenumber equal
to that of the dominant saddle of the local dispersion relation at x =5.5, that is for Re =35,
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FIGURE 4. Order 0 (—, solid symbols) and order 0 + 1 (- —, open symbols) pulsation and
temporal amplification factor x distributions for Re =35, 50, 100. Disturbances as in figure 3.
Comparison with experimental and numerical simulations results.

is minimum, see figure 6. In the far field, while the spatial amplification rate rises with
Re, see figure 3, r drops out more rapidly at higher Re, see figures 4-6.

The frequency grows with Re for fixed x,, and, fixing Re, generally decreases with
x. However, a slightly different behaviour is observed for Re =100 when x;, =35.5.
In this case, the pulsation decreases downstream, where it reaches a minimum, and
then increases, settling near a pulsation value of the order of that measured in
Williamson’s (1988) laboratory experiment and in Pier’s (2002) DNS. Examples of
streamwise evolution of the complex frequency in a wide portion of the intermediate
wake are rare in the literature. Pier (2002) has obtained this evolution up to x =20
ignoring flow non-parallelism and deriving the local characteristics by freezing the
x-coordinate and studying the equivalent parallel shear flow. Figure 2 in Pier (2002),
shows that the x trend of the frequency and temporal growth factor is qualitatively
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FIGURE 6. As figure 4 but with complex wavenumber equal to that of the dominant saddle of
the local dispersion relation at x =40.2, that is for Re =235, hy=0.078 — 0.691; for Re =50,
ho=0.074 —0.771; and for Re =100, hp=0.10 — 0.951.

analogous, under similar conditions, to the trend obtained here. Note that we are
a priori excluding the near wake from our analysis, consistently with the hypothesis
that we have adopted for the asymptotic expansion of the basic flow. Data from the
global results obtained by Pier (2002, DNS simulations), Williamson (1988, laboratory
observations) and Zebib (1987, numerical experiments) are included in figure 4. The
values of the global pulsation obtained in these numerical and laboratory experiments
are in good agreement with the complex frequency obtained in this study in the first
part of the intermediate wake.

5. Conclusions

An analytical representation of the base flow which also accurately describes
the cross-stream momentum evolution has been used in this work. First-order
spatio-temporal multiscaling yields a complex modulation equation that contains the
information on the dynamics of the flow in the coefficients. In particular, the lateral
momentum evolution and the entrainment process are included. As a consequence,
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the correction of the instability characteristics downstream to the body is obtained in
a way that takes these aspects into account.

An enriched description of the convective instability is obtained where the
wavenumber and the complex frequency vary rapidly at the beginning of the
intermediate wake. Variations increase with Re. For Re=50 and 100, extended
regions of absolute instability are reached when the disturbance has a wavenumber
equal to that of the saddle point of the dispersion relation of a section located in the
early part of the intermediate wake. When the disturbance relates to sections of the
late intermediate wake the temporal growth factor r has points of minimal temporal
stability. In the far field, r falls more rapidly at higher Re. The global values found
in laboratory and DNS experiments are close to the complex frequency obtained in
the first part of the intermediate wake when the disturbances relate to these sections.

The authors would like to thank Professor W.O.Criminale for many helpful
discussions, critical reading and interest in the progress of the work.
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